8710.4750 TEACHERS OF SCIENCE: Physics 9-12

FORM I-D GRID

Professional Education Program Evaluation Report (PEPER II)	FORM I-D			COMPLETE THIS FORM
8710.4750 Teachers of Science: Physics 9-12		Course ID Number	Any and all referenced experiences must be verifiable in the course syllabi submitted. Use specific references to activities* in the syllabi that evidence learning opportunities & assessments that align to the standard. (*readings, activities, topics of discussion, assignments, experiences, etc.)	
Subp. 7. Subject matter standards for teachers of physics. A candidate for licensure as a teacher of physics in grades 9 through 12 must complete a preparation program under subpart 2, item C, that must include the candidate's demonstration of the knowledge and skills in items A to C.				
A. A teacher of physics must demonstrate a conceptual understanding of physics. The teacher must:				
(1) use sources of information to solve unfamiliar quantitative problems and communicate the solution in a logical and organized manner as evidenced by the ability to:		Phy 195/205	Physics for Scientists and Engineer J.W. Jewett: Ch. 2-13 [*]	<u>s</u> , 8th Ed., R. A. Serway &
(a) describe, in terms of the known and unknown quantities, a given problem in the appropriate pictorial, graphical, or written form;		Phy 195/205	Physics for Scientists and Engineer J.W. Jewett: Ch. 2-13 [*]	<u>s</u> , 8th Ed., R. A. Serway &
(b) qualitatively describe, in appropriate physics terms using motion diagrams, vector force diagrams, energy or momentum diagrams, ray diagrams, or field diagrams as necessary, a given problem situation;		Phy 195/205	Physics for Scientists and Engineer J.W. Jewett: Ch. 2-13 [*]	s, 8th Ed., R. A. Serway &
(c) mathematically describe, in terms of the relevant numerical, algebraic, and trigonometric quantities and equations, a given problem;		Phy 195/205	Physics for Scientists and Engineer J.W. Jewett: Ch. 2-13 [*]	s, 8th Ed., R. A. Serway &
(d) plan, using words, diagrams, and mathematical relationships, a solution for solving a given problem and verify the solution;		Phy 195/205	Physics for Scientists and Engineer J.W. Jewett: Ch. 2-13 [*]	s, 8th Ed., R. A. Serway &
(e) implement, using algebra and manipulation and solution of coupled sets of linear equations, quadratic equations, simple differential equations, and simple integrals as necessary, a solution to a given problem; and		Phy 195/205	Physics for Scientists and Engineer J.W. Jewett: Ch. 2-13 [*]	<u>s</u> , 8th Ed., R. A. Serway &
(f) evaluate, in terms of unit consistency, reasonableness, and completeness of solution, the solution of a given problem;		Phy 195/205	Physics for Scientists and Engineer J.W. Jewett: Ch. 2-13 [*]	s, 8th Ed., R. A. Serway &
(2) use computers to display and analyze experimental and theoretical data as evidenced by the ability to:				
(a) graphically describe data using a computer;		Phy 205/206	PHY205 Lecture Notes, PHY206 L	aboratory Manual [*]
(b) design a mathematical model to provide a reasonable fit to a given set of data;		Phy 205/206	PHY205 Lecture Notes, PHY206 L	aboratory Manual [*]
(c) compute and evaluate the statistical significance of mean and standard deviation for a distribution of data;		Phy 205/206	PHY205 Lecture Notes, PHY206 L	aboratory Manual [*]
(3) estimate common physical properties as evidenced by the ability to:				

Gustavus Adolphus College

(a) describe numerically, using reasonable physical estimates, the physical properties of	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
common objects; and	195/205	J.W. Jewett: Ch. 2-13 [*]
(b) compute and evaluate the reasonableness of calculated physical parameters of	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
common objects; and	195/205	J.W. Jewett: Ch. 2-13 [*]
(4) develop a plan to ensure a safe environment and practices in all physics learning	EDU 361	Chapters 14 & 17 in the text "Teaching Secondary School
activities.		Science: Strategies for Developing Scientific Literacy
		specifically addresses how to create and maintain effective
		and safe science laboratory environments. Students are
		required to develop a lab safety policy document that includes
		the handling and management of all lab materials and
		specimens and a list of the equipment and basic materials
		required to do so
B A teacher of physics must demonstrate a knowledge of physics concepts. The		
teacher must:		
(1) understand linear and rotational motion as evidenced by the ability to:		
(a) perform measurements and calculations to describe the linear and angular position,	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
velocity, and acceleration of a given object; the forces and torques acting on an object;	195/205	J.W. Jewett: Ch. 2-12 [*]
and the energy, momentum, and angular momentum of a system before and after an		
interaction;		
(b) describe, using words, pictures and diagrams, graphs, vectors, and mathematical	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
relationships, the motion of a given object;	195/205	J.W. Jewett: Ch. 2-4 [*]
(c) describe, using words, free-body vector diagrams, and mathematical relationships,	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
the forces acting on each object in a given system of interacting objects and explain,	195/205	J.W. Jewett: Ch. 5^*
using Newton's Second and Third Laws, the relationships between all the forces;		
(d) describe, using words, energy diagrams or graphs, and mathematical relationships,	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
the change of energy of a system and any transfer of energy into or out of a given	195/205	J.W. Jewett: Ch. 7-8
(a) describe using words vector diagrams and mathematical relationships the change	Dhy	Dhusing for Scientists and Engineers 9th Ed. D. A. Sorway &
of linear or angular momentum of a given system and any transfer of momentum into or	105/205	I W Jowetti Ch. 10.11*
out of the system of interacting objects;	195/205	J. W. Jewett. Cll. 10-11
(f) explain and predict qualitatively and quantitatively, in terms of Newton's Laws, the	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
conservation of energy, and the conservation of momentum, the motion of objects in a	195/205	J.W. Jewett: Ch. 9 [*]
given system of interacting objects; and		
(g) design a strategy for making an object move in a given way;	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
	195/205	J.W. Jewett: Ch. $2-10^{\circ}$
(2) understand simple harmonic and wave motion as evidenced by the ability to:		
(a) perform measurements and calculations to describe the wavelength, amplitude,	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
period, frequency, and energy of a traveling wave or an object in simple harmonic	205	J.W. Jewett: Ch. 15-16 [*]
motion;		
(b) describe, using words, force diagrams, energy diagrams or graphs, motion graphs,	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
and mathematical relationships, simple or damped harmonic motion or resonance of a	205	J.W. Jewett: Ch. 15
given oscillating system;	Dhave	Dhanias fan Caiastista and Ensinesans 94h Ed. D. A. Carasa
(c) explain and predict quantatively and quantitatively, using the equation of motion,	Pny 205	<u>Physics for Scientists and Engineers</u> , 8th Ed., K. A. Serway &
the oscillator change when a given external force is applied to the oscillator, and when	205	J.w. Jewett: Cn. 15
the oscillator change, when a given external force is applied to the oscillator, and when		

the oscillator loses energy to its surroundings;		
(d) design, using words, diagrams or graphs, and mathematical relationships, a system	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
which oscillates at a given frequency or exhibits damped oscillations;	205	J.W. Jewett: Ch. 15 [*]
(e) describe a traveling or standing wave in a given medium;	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
	205	J.W. Jewett: Ch. 16 [*]
(f) explain and predict qualitatively and quantitatively, using the wave equation of	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
motion and the superposition principle, changes in wave motion when a given traveling	205	J.W. Jewett: Ch. 16 [*]
wave interacts with a given object or boundary;		
(g) explain and predict qualitatively and quantitatively, using the wave equation of	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
motion and the superposition principle, changes in wave motion when a given traveling	205	J.W. Jewett: Ch. 16 [*]
wave interacts with a second wave; and		
(h) explain and predict qualitatively and quantitatively, using the wave equation of	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
motion and the superposition principle, changes in the wave when the source and	205	J.W. Jewett: Ch. 16-17 [*]
detector are moving relative to each other;		
(3) understand electricity and magnetism as evidenced by the ability to:		
(a) perform measurements and calculations to describe time varying or constant values	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
of current, voltage, and power in electric circuits and in magnetic fields;	215/216	J.W. Jewett: Ch. 27-33 [*]
(b) describe, using words, circuit diagrams, graphs, and mathematical relationships, the	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
current, voltage, resistance, capacitance, or inductance of a given system of circuit	215	J.W. Jewett: Ch. 27-33 [*]
elements;		
(c) explain and predict qualitatively and quantitatively, using the conservation of charge	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
and the conservation of energy, the current through or the voltage across each element	215	J.W. Jewett: Ch. 27 [*]
in a given circuit when changes are made to the circuit;		
(d) design a circuit in which the current varies in a given way;	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
	215/216	J.W. Jewett: Ch. 27
(e) explain and predict qualitatively and quantitatively, in terms of Newton's laws and	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
the Lorentz Force, the motion of charges in given electric and magnetic fields;	215	J.W. Jewett: Ch. 23,29 [*]
(f) predict qualitatively and quantitatively, using Gauss's law or Ampere's law, the	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
electric field around a given simple geometric distribution of charges and the magnetic	215	J.W. Jewett: Ch. 24,30 [*]
field around a given simple geometric system of current-carrying wires;		
(g) predict qualitatively, using Lenz's law and Faraday's Law, the induced currents from	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
a given changing magnetic flux;	215	J.W. Jewett: Ch. 31 [*]
(h) design, using simple materials, a working electric motor and an air-core	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
electromagnet that produces a field strength; and	215/216	J.W. Jewett: Ch. 30-31 [*]
(i) explain, in terms of the motion of charges and the electromagnetic nature of light,	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
how electromagnetic radiation is generated in a given situation;	215	J.W. Jewett: Ch. 34 [*]
(4) understand physical and geometrical optics as evidenced by the ability to:		
(a) perform measurements and calculations to describe light intensity and polarization	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
of a given light source, the location of images formed by a simple mirror and lens	195	I.W. Jewett: Ch. 35-38 [*]
system, and the focal length and magnification of a curved mirror or thin lens;		
(b) describe, using words, ray diagrams, graphs, and mathematical relationships, the	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
reflection, refraction, transmission, and absorption of light when it encounters a given	195	J.W. Jewett: Ch. 35-38 [*]
macroscopic object, a plane or curved mirror, a boundary between mediums of different		
indices of refraction, a linear polarizer, a prism, and thin concave and convex lenses;		
(c) explain and predict qualitatively and quantitatively, in terms of ray diagrams and the	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &

laws of reflection and refraction of light, the location and magnification of a real or virtual image for a given system of mirrors or lenses:	195	J.W. Jewett: Ch. 35-36 [*]
(d) design a system of lenses and mirrors to produce a real or virtual image of a given	Phy	Physics for Scientists and Engineers 8th Ed R & Serway &
magnification;	195	J.W. Jewett: Ch. 35-36 [*]
(e) describe, using words, diagrams, and graphs, the interaction of monochromatic light	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
with a given single or pair of parallel slits and with thin films; and	195	J.W. Jewett: Ch. 37-38 [*]
(f) explain and predict qualitatively and quantitatively, using the behavior of waves and	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
the principle of superposition, the change in the resulting light pattern with given	195	J.W. Jewett: Ch. 37-38 [*]
changes in slit width, separation, and the wavelength of the incident light on a system of		
slits;		
(5) understand the kinetic-molecular model of matter and thermodynamics as evidenced by the ability to:		
(a) perform measurements and calculations to describe the mass, volume, density,	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
temperature, and heat capacity of a solid, liquid, or gas at constant pressure and the	195/205	LW. Jewett: Ch. 19-20*
pressure in a gas;	1907200	
(b) explain qualitatively, using the kinetic-molecular model of matter, a common	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
physical change;	195/205	J.W. Jewett: Ch. 21 [*]
(c) describe, using words, graphs, and mathematical relationships, changes in pressure,	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
volume, or temperature of an ideal gas;	195/205	J.W. Jewett: Ch. 21 [*]
(d) predict, using the First Law of Thermodynamics, the final temperature of a given	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
thermally isolated system of interacting objects and materials;	195/205	J.W. Jewett: Ch. 20 [*]
(e) explain and predict qualitatively and quantitatively, using the First Law of	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
Thermodynamics, the transfer of heat into or out of a given system;	195/205	J.W. Jewett: Ch. 20 [*]
(f) explain, using the First Law of Thermodynamics, the changes of pressure.	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
temperature, and volume for a monatomic ideal gas operating in a Carnot cycle between	195/205	I.W. Jewett: Ch. 20.22*
given states, and describe quantitatively, using words, graphs, and mathematical	175/205	5. W. Sewett. Ch. 20,22
relationships, the thermal efficiency of the system; and		
(g) explain, in terms of the second law of thermodynamics, why energy flows from hot	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
to cold objects; and	195/205	J.W. Jewett: Ch. 22 [*]
(6) understand contemporary physics as evidenced by the ability to:		
(a) perform measurements and calculations to detect nuclear radiation in the	Phy	Physics for Scientists and Engineers, 8th Ed., R. A. Serway &
environment, and determine wavelengths and energy of the emission spectrum of a	195/225	J.W. Jewett: Ch. 44-45 [*] ; Modern Physics for Scientist and
given gas;		Engineers, 2nd Ed., J.A. Taylor, C.D. Zafiratos, M.A. Dubson:
		<u>Ch. 4.5.11.16.17</u> *
(b) describe, using words, diagrams, and mathematical relationships, the time dilation.	Phv	Modern Physics for Scientist and Engineers. 2nd Ed.
length contraction, and momentum and energy of an object of given velocity;	225	J.A.Taylor, C.D. Zafiratos, M.A. Dubson: Ch. 1,2*
(c) describe, using words, diagrams, and tables, the basic atomic and subatomic	Phy	Modern Physics for Scientist and Engineers 2nd Ed
constituents of matter;	225	J.A.Taylor, C.D. Zafiratos, M.A. Dubson; Ch. 3.8.10.16-18 [*]
(d) explain qualitatively, in terms of the standard model, the observed interaction	Phy	Modern Physics for Scientist and Engineers 2nd Ed
between atomic or subatomic particles in a simple situation;	225	I A Taylor C D Zafiratos M A Dubson Ch 10 11 17 [*]
(e) explain qualitatively using the quantum nature of light and matter, and the	Phy	Modern Physics for Scientist and Engineers and Ed
conservation of energy and momentum the observed interaction between photons and	225	LA Taylor C D Zafiratos M A Dubson Ch 2 4 [*]
matter in a given situation;	223	J.A. Laylor, C.D. Zamaios, IVI.A. Duoson. Ch. 3,4
(f) explain, using conservation principles, the observed changes in the matter and	Phy	Modern Physics for Scientist and Engineers, 2nd Ed.,

energy of a given nuclear process;	225	J.A.Taylor, C.D. Zafiratos, M.A. Dubson: Ch. 17*
(g) predict, using the Heisenberg Uncertainty Principle, the lower limit of size,	Phy	Modern Physics for Scientist and Engineers, 2nd Ed.,
momentum, energy, or time that could be expected in a given atomic or subatomic measurement or situation: and	225	J.A.Taylor, C.D. Zafiratos, M.A. Dubson: Ch. 6*
(h) describe, in terms of the energy bands and levels in the material, the electrical	Phy	Modern Physics for Scientist and Engineers, 2nd Ed.
conductivity of a given conductor, insulator, or semiconductor.	225	J.A.Taylor, C.D. Zafiratos, M.A. Dubson: Ch. 13*
C. A teacher of physics must demonstrate an advanced conceptual understanding of		
physics and the ability to apply its fundamental principles, laws, and concepts by		
completing a full research experience. The teacher must:		
(1) identify various options for a research experience including independent study	Phy	Students identify experiment or research project
projects, participation in research with an academic or industry scientist, directed study,	365	
internship, or field study;		
(2) select an option and complete a research experience that includes conducting a	Phy	Students perform literature search, etc. to identify research
literature search on a problem;	365	project
(3) design and carry out an investigation;	Phy	Students perform experiment and data analysis
	365	
(4) identify modes for presenting the research project; and	Phy	Students write a formal report on project
	365	
(5) present the research project in the selected mode.	Phy	Students write a formal report on project
	365	

* Any instructor teaching any of the listed courses will meet all of the MN State Standards. For all physics courses, the students will be introduced to the material using a combination of one or more of the following: textbook and other assigned readings, lectures, demonstrations, recitations, and laboratory experiments. The students will be assessed using one or more of the following: written and/or computer graded homework, group problems, quizzes, hour exams, or final examinations. The textbook chapters listed are those used by the instructor for a recent course offering. Any other textbook used for these courses will cover these same standards at essentially the same level as the textbook listed above.